
Compute Cluster Server Lab 2: Carrying out Jobs under Microsoft
Compute Cluster Server 2003

Compute Cluster Server Lab 2: Carrying out Jobs under Microsoft Compute Cluster Server 20031
Lab Objective ...1

General Scheme of Carrying out the Jobs under Microsoft Compute Cluster Server 2003 1
Exercise 1 – Compiling a Program for Running under CCS 2003 .. 3

Task 1 – Installation of Microsoft Compute Cluster Pack SDK..3
Task 2 – Setting the Development Integration Environment of Microsoft Visual Studio 20056
Task 3 – Compiling a Parallel Program in Microsoft Visual Studio 2005...9

Exercise 2 – Running a Serial Task .. 14
Launching the Program via Graphic User Interface...14
Launching the Program by Means of Template ...23
Launching the Program from the Command Line..27

Exercise 3 – Launching a Parallel Job .. 29
Exercise 4 – Launching a Parametric Sweep.. 36
Exercise 5 – Launching a Work Flow .. 43
Optional Exercise. Evaluating the Network Performance Parameters.. 52

General Network Performance Parameters...52
Methods for Evaluating the Network Performance Parameters...53
Compiling the Benchmark Program...53
Running the Benchmarks...53

Discussions.. 58

In order to use the high performance cluster effectively, it is necessary to use a family of quite complicated

software systems. For a long time the users of Windows clusters have to use simultaneously the software from
several vendors. With the release of Compute Cluster Server 2003 (CCS) Microsoft company provided a full
spectrum of software, which is necessary for the efficient use of clusters and the development of the parallel
programs, which fully use the available computational power.

Lab Objective
The lab objective is to learn how to compile and start programs under the management of Microsoft Compute

Cluster Server 2003. The lab assignments include:
• Exercise 1 – Compile a program to be run under CCS 2003.
• Exercise 2 – Launch a serial job
• Exercise 3 – Launch a parallel job
• Exercise 4 – Launch a parametric sweep
• Exercise 5 – Launch a work flow
Estimated time to complete this lab: 90 minutes.

General Scheme of Carrying out the Jobs under Microsoft Compute
Cluster Server 2003

To use the computational cluster resources efficiently, it is necessary to provide not only the immediate
mechanisms of starting the jobs to be executed, but also to provide the management environment, which should
manage the course of executing the jobs and solve the problem of efficient resource distribution. These tasks are
efficiently solved with the help of the means embedded to CCS 2003.

Let us define the most important concepts used in CCS 2003:
• A job is a request for the allocation of the cluster computational resources for carrying out a task. Each job

may consist of one or more tasks,
• A task is a command or a program (including the parallel ones), which has to be executed on the cluster.

A task cannot exist outside a certain job. A job may contain one or more tasks,

• A job scheduler is a service providing the job queue, allocating system resources, queuing the tasks and
controlling the state of the executed tasks,

• A node is a computer, which is included into a cluster controlled by CCS 2003,
• A processor is one of the node computational devices,
• A queue is the list of tasks to be executed on the cluster, which are sent to the job scheduler. The order, in

which the tasks are executed on the cluster, is determined by the planning policy adopted on the cluster,
• A task list is an equivalent of the job queue for the tasks of each concrete job. The order of executing the

tasks will be determined by the FCFS strategy (first come, first served), if the user has not purposefully set
some other order.

A job scheduler CCS 2003 operates both the serial and parallel tasks. The task is referred to as serial if it uses
the resources of only one processor. The task is regarded to be parallel if it consists of several processes (or threads),
which interact with each other in order to solve the task. As a rule, parallel MPI tasks require several processors for
efficient execution. If MPI is used to provide message transmissions between parallel processes, then the parallel
program may be executed on different cluster nodes. CCS 2003 includes its own realization of the standard MPI2:
the library Microsoft MPI (MS MPI). If MS MPI is used, it is necessary to run parallel tasks using the special utility
mpiexec.exe, which provides a simultaneous start of several parallel program copies on the selected cluster nodes. It
should be noted that the immediate task start is the responsibility of the job scheduler, and the user can only add a
program to the queue as its starting time is chosen automatically by the system depending on the availability of the
computational resources and the tasks waiting in the queue for allocating the resources. Thus, it is necessary to
perform the following operations to execute a program under CCS 2003:

• To create a job describing the computational resources necessary for its execution,
• To create a task. The task is defined by means of a command. The execution of the command leads to

running serial or parallel programs on the cluster. For instance, a parallel task is described by means of the
command mpiexec.exe with the corresponding parameters (the list of the nodes for its executing, the name
of the parallel program, the arguments of the command program line etc.),

• To add the task to the job created previously.
There are two special types of jobs:
• A parametric sweep is one and the same program (serial or parallel), several copies of the program are

executed (possibly simultaneously) with various input parameters and various output files,

• A work flow is the case when several tasks (possibly the same program with different input parameters)

are executed in a certain sequence. The sequence of execution is determined, for instance, by the task
dependence against the computational results of the other tasks.

Input
parameters 1

Task 1

Input
parameters 2

Input
parameters n

Results of
Task 1

Task 2

Task n

Results of
Task 2

…

Results of
Task n

Task 1

It will be demonstrated further in the lab, how to compile and run serial and parallel tasks under CCS 2003.
Besides, there will be given examples of the parametric sweep and the work flow.

Exercise 1 – Compiling a Program for Running under CCS 2003
As it has been stated preciously, Microsoft Compute Cluster Server 2003 makes possible to control the

execution of serial and parallel tasks. The parallel MPI tasks can be built with any MPI implementation (though the
MS MPI implementation is preferable). Besides, it is possible to use other technologies for supporting the parallel
programming (for instance, programming with the use of OpenMP).

This part describes only compiling parallel programs for MS MPI in Microsoft Visual Studio 2005.

Task 1 – Installation of Microsoft Compute Cluster Pack SDK
In order to compile parallel programs operating in the environment MS MPI, it is necessary to install SDK

(Software Development Kit), which is the set of interfaces and libraries for calling MPI functions:
• Open the directory containing the download version of SDK (the description of the download procedure

may be found in the Compute Cluster Server Lab 1 “Installation of Microsoft Compute Cluster Server
2003”) and run the installation program, which corresponds to your processor (32 bit or 64 bit version),

• In the opened window press the button Next to start the installation process,

Task 2
(depends on

Task 1)

Task 3
(depends on

Task 1)

Task 4
(depends on

Tasks 2 and 3)

• Read the license agreement carefully. Choose the option "I accept the terms in the license agreement" in

case you agree to the license agreement terms of using the system CCS 2003 and press the button Next,

• Choose the directory where you are going to install SDK. To change the standard directory, press the

button Change. Press the button Next,

• In the new window press the button Install to start the installation of SDK,

• Wait till the program of SDK installation copies the required files,

• After copying the necessary files, press the button Finish,

• Congratulations! The installation of Microsoft Compute Cluster Server 2003 SDK is completed.

Task 2 – Setting the Development Integration Environment of Microsoft Visual
Studio 2005

In order to compile the program using MS MPI, it is necessary to change the following project settings on
default in Microsoft Visual Studio 2005:

• The path to the header files of MPI declaration. Choose the menu option Project->Project Properties.
In the option Configuration Properties->C++->General->Additional Include Directories enter the path
to the header files of MS MPI: <Installation Directory CCS SDK>\Include,

• The library file with the realization of MPI functions. Choose the menu option Project->Project

Properties. In the option Configuration Properties->C++->Linker->Input->Additional Dependencies
enter the name of the library file msmpi.lib,

• The path to the library file msmpi.lib. Choose the menu option Project->Project Properties. In the

option Configuration Properties->C++->Linker->General->Additional Library Directories enter the
path to the library file msmpi.lib: <Installation Directory CCS SDK>\Lib\i386 or <Installation
Directory CCS SDK>\Lib\AMD64 depending on the processor architecture you are using,

Task 3 – Compiling a Parallel Program in Microsoft Visual Studio 2005
As an example of the parallel program for this task, we will use the parallel algorithm of computing the Pi. In

this work we describe only the technical aspects of using Microsoft Compute Cluster Server 2003; the description of
the algorithm and the aspects of its implementation are described in Lab “Parallel Programming using MPI”. In this
task we will consider only the aspects of using Visual Studio 2005 for compiling a parallel MPI program to be used
in the environment MS MPI:

• Run Microsoft Visual Studio 2005,

• Create a new project: choose the menu option File->New->Project. In the window, where you choose the

new project, choose the console Win32 application (Other Languages->Visual C++->Win32->Win32
Console Application), enter the project name in the field Name (for instance, “parallelpi”) and make sure
that the path to the project if chosen correctly (the field Location). Press the button OK to choose the rest
settings of the project being created,

• Press the button Next in the new window,

• Choose the project settings in the new window (you can accept all the default settings). Press the button

Finish,

• In the window Solution Explorer double click on the file parallelpi.cpp (the file name coincides with the

project name you have entered)

• Delete the file content and replace it with the following code (see Lab "Parallel Programming using
MPI"):

#include "stdafx.h"
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <mpi.h>

void main(int argc, char *argv[]) {
 int NumIntervals = 0; // num intervals in the domain [0,1]
 double IntervalWidth = 0.0; // width of intervals
 double IntervalLength = 0.0; // length of intervals
 double IntrvlMidPoint = 0.0; // x mid point of interval
 int Interval = 0; // loop counter
 int done = 0; // flag
 double MyPI = 0.0; // storage for PI approximation results
 double ReferencePI = 3.141592653589793238462643; // value for comparison
 double PI;
 char processor_name[MPI_MAX_PROCESSOR_NAME];
 char (*all_proc_names)[MPI_MAX_PROCESSOR_NAME];
 int numprocs;
 int MyID;
 int namelen;
 int proc = 0;

 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
 MPI_Comm_rank(MPI_COMM_WORLD,&MyID);
 MPI_Get_processor_name(processor_name,&namelen);

 all_proc_names = (char(*)[128]) malloc(numprocs * MPI_MAX_PROCESSOR_NAME);

 MPI_Gather(processor_name, MPI_MAX_PROCESSOR_NAME, MPI_CHAR,
 all_proc_names, MPI_MAX_PROCESSOR_NAME, MPI_CHAR, 0, MPI_COMM_WORLD);
 if (MyID == 0) {
 for (proc=0; proc < numprocs; ++proc)
 printf("Process %d on %s\n", proc, all_proc_names[proc]);
 }

 IntervalLength = 0.0;
 if (MyID == 0) {
 if (argc > 1) {
 NumIntervals = atoi(argv[1]);
 }
 else {
 NumIntervals = 100000;
 }
 printf("NumIntervals = %i\n", NumIntervals);
 }

 // send number of intervals to all procs
 MPI_Bcast(&NumIntervals, 1, MPI_INT, 0, MPI_COMM_WORLD);

 if (NumIntervals != 0)
 {
 //approximate the value of PI
 IntervalWidth = 1.0 / (double) NumIntervals;

 for (Interval = MyID+1; Interval <= NumIntervals; Interval += numprocs){
 IntrvlMidPoint = IntervalWidth * ((double)Interval - 0.5);
 IntervalLength += (4.0 / (1.0 + IntrvlMidPoint*IntrvlMidPoint));
 }
 MyPI = IntervalWidth * IntervalLength;

 // Calculating the sum of all local alues of MyPI
 MPI_Reduce(&MyPI, &PI, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

 //report approximation
 if (MyID == 0) {
 printf("PI is approximately %.16f, Error is %.16f\n",
 PI, fabs(PI - ReferencePI));
 }
 }

 MPI_Finalize();
}

• Make settings of the project Visual Studio 2005 for compiling the MPI part of the project in accordance
with the instructions given in “Setting the development integration environment of Microsoft Visual
Studio 2005”,

• Execute the command Build->Rebuild Solution for compiling and linking the project,
• Congratulations! The compilation of the program MS MPI is successfully completed.

Exercise 2 – Running a Serial Task
A task is considered to be serial if it uses the resources of only one processor for its execution. Compiling a

serial program (and also compiling a parallel program with the use of the technology OpenMP) for using it on the
cluster under Compute Cluster Server 2003 does not differ from the standard one and does not require using
additional libraries. In the given exercise we will consider all required steps to run a serial task on the cluster.

Launching the Program via Graphic User Interface
• Open the project of the serial program for calculating the Pi (serialpi), which appears together with Lab

"Parallel Programming using MPI", and compile the program in the configuration Release,

• Open Computer Cluster Job Manager (Start->All Programs->Microsoft Compute Cluster Pack-
>Compute Cluster Job Manager) to run the program on the cluster. If you have installed the client part
Compute Cluster Pack on your PC, you can queue the tasks immediately from your computer, otherwise
you should go to the head cluster node or any other node, where the client part is installed, via Remote
Desktop Connection,

• In the open window of the job manager choose the menu option File->Submit Job in order to enqueue the

job,
• In the window of job enqueuing enter the name of the job (field Job Name), if it is necessary, change the

priority of the job (the user’s jobs of high priority will be executed prior to the jobs of lower priority). Go
to the tab Processors,

• In the tab Processors enter the maximum and the minimum number of the processors required for the jobs

(in our case the maximum required number of processors is one, as the task is serial). We assume the
number of processors to be maximum if it is optimum for this job (this number of processes will be
allocated in case of low cluster load). It is guaranteed that the job will not be started, if the number of
available processors on the cluster is less than the minimum number. Additionally you can enter the
estimated run time of the job (it will help the job scheduler to distribute the system resources more
efficiently) – the window panel Estimate run time for this job. If you want the computational resources to
be reserved for the job during some specified period of time even after all the tasks have finished their
execution, then tick the option Run job until end of run time or until canceled. Thus, you will be able to
start new tasks of the job even after all the originally given tasks have been completed. Go to the window
tab Tasks in order to add new tasks,

• Enter the task name (the field Task Name) and the command for executing (the field Command Line) –

the program name and the command line parameters. The program should be located on the shared network
location, which is accessible from all cluster nodes. Press the button Add to add a new task to the job,

• The task, which was added, will appear in the task list of the current job (the list This job contains the

following tasks). Select it in the list and press the button Edit in order to edit the additional task
parameters,

• In the new window enter the file, where you are going to redirect the standard output stream of the console

application (the field Standard Output). Besides, you may specify the file of the standard input stream
(the field Standard Input), the file of the standard error stream (the field Standard Error), the work
directory of the program being executed (the field Work Directory) and the time limits on the duration of
the task run time (the total run time must not exceed the estimations of the task run time) – the field Limit
task run time to. Choose the window tab Processors,

• In the window tab Processors in the upper list (Select task to view settings) select the task, where you

want to change the settings, and specify the minimum and the maximum number of processors for the
selected task (the fields Min. required and Max. required) if you want the job scheduler to select the
nodes automatically (Use any available processors on any nodes). If you want to select the nodes
manually, choose the option Select nodes required for this task and tick the required nodes in the lower
list. As the task is serial, it requires only one processor. This is the end of setting the task parameters. Press
OK to save the changes to be done and return to the job setting,

• Go to the window tab Advanced and choose the option Use any available nodes to choose the nodes for

the job automatically. If you want to select the nodes for executing the job manually, choose the option Use
only these nodes. Remember that if you have selected the nodes manually, these nodes must be also
selected for the whole job. Tick Use the allocated nodes exclusively for this job in order to prohibit
executing several jobs on the same node. Press the button Submit to add the job to the queue,

• Enter the name and the password of the user, who is authorized to run tasks on the cluster, and press OK,

• The job will appear in the queue. After the execution of the job its status will change to Finished.

• In the file specified in the job setting for the redirection of the standard output stream, you can find the

results of the program execution.

Launching the Program by Means of Template
If you want to launch the task of the serial calculation of the Pi once again (for instance, with other

parameters), it will be useful for you to use the command storing all the parameters of the previously launched job in
xml-file with the possibility to quickly create a copy:

• Open Computer Cluster Job Manager (Start->All Programs->Microsoft Compute Cluster Pack-
>Compute Cluster Job Manager) and double click on the job, the parameters of which you want to save
in the xml-file,

• Press the button Save As Template in the window to save the job parameters in the file,

• In the open window choose the directory, where you should save the file, and enter its name. Press the

button Save to save the job in the file,

• In order to create the job using the template in the window Compute Cluster Job Manager, choose the

menu option File->Submit Job with Template… In the window for choosing the template, select the file,
where you saved the job at the previous step, and press the button Open,

• You will see the window for adding the job to the queue. The job parameters and the parameters of all its

tasks will be identical to those of the job, which was the basis for creating the template. You can change
any required job parameters leaving the rest of them unchanged. Thus, you will save time for editing. For
instance, you can increase the number of partitioning the integration interval for calculating the Pi

described in the previous example (the algorithm, which was used for calculating the Pi, is reduced to the
numerical calculation of a definite integral), you can leave the rest of the parameters unchanged.

Launching the Program from the Command Line
It is often more convenient to control the course of executing jobs from the command line. Microsoft Compute

Cluster Server 2003 includes the utilities, which provide full control over the course of executing jobs on the cluster.
This Lab will illustrate the launch of a serial task from the command line. The launch of a parallel program and

the creation of the parametric sweep and a work flow may be also executed from the command line. Additional
information on the commands and their parameters is available in the documentation supplied with Microsoft
Compute Cluster Pack.

In order to start the serial program of calculating the Pi, you should do the following:
• Open the command window (Start->Run, enter the command cmd and press Enter),
• To create a new job enter the command “job new /jobname:SerialPiCL /scheduler:s-cw-head” (do not

forget to change the command parameters for the ones, which correspond to your case), where the
parameter “jobname” is the name of the job being added, “scheduler” is the name of the head cluster
node. The command will print the identifier (id) of the created job. Further on you will work with this id,

• In order to add a new task to the job enter the command “job add 26 /numprocessors:1 /scheduler:s-cw-

head /stdout://s-cw-head/temp/serialpi.txt /workdir://s-cw-head/temp/ serialpi.exe 1000” (do not forget
to change the command parameters for the ones, which correspond to your case). Here the number “26” is
the job id printed at the previous step. The parameter “numprocessors” sets the number of the processors
required for the task (to set the minimum and the maximum number of processors you should use the
format “/numprocessors:x-y”, where x is the minimum number of processors, and y is the maximum
number of processors). The parameter “stdout” sets the file, where the standard output stream will be
redirected. The parameter “workdir” sets the directory on default for the application to be launched. After
the parameters you will specify the command to launch the application and the arguments of the command
line,

• To start scheduling the job enter the command “job submit /id:26 /scheduler:s-cw-head” (do not forget to

change the command parameters for the ones, which correspond to your case). Enter the user’s password,
which you used to login in the system. If requested whether to store your password in order not to enter it
further, enter “n” to refuse,

• Your task has been added to the queue, and the scheduler has begun to plan its launch. You can track the

status in the program Job Manager or by entering the command “job list /scheduler:s-cw-head /all” (do
not forget to change the command parameters for the ones, which correspond to your case).

Exercise 3 – Launching a Parallel Job
In Task 3 of Exercise 1 we compiled the parallel program for calculating the value of Pi for MS MPI. Let us

launch it on the cluster under Microsoft Compute Cluster Server 2003:
• Open Computer Cluster Job Manager (Start->All Programs->Microsoft Compute Cluster Pack-

>Compute Cluster Job Manager) to start the program on the cluster,

• In the window of the job manager choose the menu option File->Submit Job in order to add a new job to
the queue,

• In the window of adding the job to the queue enter the job name (the field Job Name). Go to the window
tab Processors,

• In the window tab Processors enter the minimum and the maximum number of processors required for

executing the job (for instance, 10 and 20 correspondingly). Go to the window tab Tasks to add new tasks
to the job,

• Add the task name (the field Task Name) and the command to be executed (the field Command Line).

Launching the tasks developed for MS MPI must be executed with the use of the special utility
mpiexec.exe, which accepts the name of the parallel program, the list of nodes, where the launch will be
executed, and the parameters of the program being launched, as its parameters. The list of nodes is set by
the parameter “-hosts”. If the nodes have been allocated automatically by the scheduler, the list of nodes
will be contained in the environment variable CCP_NODES. The value of the variable should be given to
the utility as a parameter. The example of the command for launching the parallel program is “mpiexec.exe
–hosts %CCP_NODES% \\s-cw-head\temp\parallelpi.exe”. Press the button Add to add the task to the
job,

• The added task will appear in the task list of the current job (the list This job contains the following

tasks). Select it in the list and press the button Edit to edit the additional task parameters,

• In the new window enter the path to the file, where the standard output stream of the console application

will be redirected (the field Standard Output). Choose the window tab Processors,

• In the window tab Processors in the upper list (Select task to view settings) select the task, where you

want to change the settings, and give the maximum and the minimum number of processors for the selected
task (the fields Min. required and Max. required). Press OK to save the changes to be done and return to
the job settings,

• Press the button Submit to add the job to the queue. In the window requesting for the password, enter the

name and the password of the user, who is authorized to launch tasks on the cluster, and press OK. The job
will appear in the queue Job Manager. After the job execution is completed, its status will change for
Finished. The file, given in the task settings for redirection of the standard output stream, contains the
results of the program execution,

Exercise 4 – Launching a Parametric Sweep
Here we will consider the launch of parametric sweep within a job. The parametric sweep is a series of

launches of the same program with different parameters. As an example you can run a series of several hundreds
experiments on computing the Pi in order to study the rate of the method convergence to the solution. As an
example of the program for this Exercise we will use the program of parallel computation of the Pi:

• Open Computer Cluster Job Manager (Start->All Programs->Microsoft Compute Cluster Pack-
>Compute Cluster Job Manager) to create the parametric sweep,

• In the window of the job manager choose the menu option File->Submit Job to add a new job to the

queue,
• In the window of adding the job to the queue enter the job name (the field Job Name). Go to the window

tab Processors,

• In the window tab Processors enter the minimum and the maximum number of processors required for

executing the job (for instance, 10 and 20 correspondingly). Go to the window tab Tasks and press the
button Add parametric Sweep in the window tab to add new tasks to the job,

• In the window of adding the parametric sweep enter the name assigned to each new task (the field Name).

Enter the command for the task using the asterisk (the symbol “*”) as the argument parameter of the
command line. The symbol “*” for each particular command will be replaced by an integer number, the
range of change for the number will be specified in the fields Index Start and Index End. The index for
our task (the number of intervals of the numerical integration) may change, for instance, from 50 to 100.
Thus, the command may be the following: “mpiexec.exe –hosts %CCP_NODES% \\s-cw-
head\temp\parallelpi.exe *”. Specify the files, where the standard output stream will be redirected, using
“*” as a parameter. For instance: “\\s-cw-head\temp\parallelpi*.txt”. Press OK to add a task sweep to the
job,

• In the window of the job setting select all the tasks contained in the job (in order to select several tasks,

use the key Shift), press the button Edit to specify the number of the processors required for the tasks. In
the new window go to the window tab Processors, select the option Use any available processors on any
nodes and specify, for instance, 10 as the minimum number of processors, and 20 as the maximum one.
Press OK. In the open window press the button Submit to add the job to the queue,

• Enter the name and the password of the user authorized to run tasks on the cluster and press OK,

• A new job will appear in the window Job Manager. If you select it, you will be able to track the

execution of its tasks in the lower list. When the job is completed, its status will change for Finished,

• You can look through the results of the job execution in the files, which you have specified for saving the

redirected output stream.

Exercise 5 – Launching a Work Flow
The work flow is used if the execution of a certain task within a job requires the results of the other task

execution, which creates requirements to the task execution sequence. These requirements are convenient to set in
the form of the acyclic oriented graph, where each vertex is a task, and the arrow shows the dependence of the
vertex - child against the vertex - parent. In this case the task execution sequence is defined by the following simple
rule: neither of the tasks can be launched until all the tasks, which correspond to its parents on the dependence
graph, are executed.

We can consider the following task dependence graph as an example:

Command
hostname

Let us set this dependence graph in CCS 2003:
• Open Computer Cluster Job Manager (Start->All Programs->Microsoft Compute Cluster Pack-

>Compute Cluster Job Manager),

• In the new window of job manager choose the menu option File->Submit Job,
• In the window of adding a job to the queue enter the name of the job (the field Job Name). Go to the

window tab Processors,

Sequential
algorithm of Pi

calculation (1000
intervals)

Sequential
algorithm of Pi

calculation (2000
intervals)

Parallel algorithm
of Pi calculation
(10000 intervals)

• In the window tab Processors enter the minimum and the maximum number of processors required for

executing the job (for instance, 5 and 10 correspondingly). Go to the window tab Tasks to add new tasks to
the job,

• Add the following 4 tasks to the job sequentially:

− The task named “Hostname” with the command “hostname.exe”,
− The task named “Serial Pi 1000” with the command “\\s-cw-head\temp\serialpi.exe 1000” (change

the path to the executed file of the program for the existing one),
− The task named “Serial Pi 2000” with the command “\\s-cw-head\temp\serialpi.exe 2000” (change

the path to the executed file of the program for the existing one),
− The task named “Parallel Pi 10000” with the command “mpiexec –hosts %CCP_NODES% \\s-cw-

head\temp\parallelpi.exe 10000” (change the path to the executed file of the program for the existing
one),

• Set the additional parameters of the tasks:

− For the tasks “Hostname”, “Serial Pi 1000” and “Serial Pi 2000” set the maximum required number
of processors as 1, set the file for redirecting the standard output stream for each of the 3 tasks,

− For the task “Parallel Pi 10000” set the minimum and the maximum required numbers of processors
as 5 and 10 correspondingly, set the file for redirecting the standard output stream,

• Go to the window tab Tasks Dependencies of the task properties (to go to the task properties, press the
button Edit in the window tab Tasks of the window Submit Job),

• Select the task “Serial Pi 1000” and press the button Preceding Tasks to set the tasks, from which the

considered task depends on,

• In the new window tick the task “Hostname”. Press OK,

• Set the dependence against “Hostname” for the task “Serial Pi 2000”. Set the dependence against the tasks

“Serial Pi 1000” and “Serial Pi 2000” for the task “Parallel Pi 10000”. Press OK to change the changes to
be done,

• In the window Submit Job press the button Submit to add the job to the queue,

• Enter the name and the password of the user authorized to run jobs on the cluster,
• The scheduler CCS 2003 will first start the task “Hostname”, then the tasks “Serial Pi 1000” and “Serial

Pi 2000” in parallel, and only after that it will start the task “Parallel Pi 10000”.

Optional Exercise. Evaluating the Network Performance Parameters
The necessity to take into account not only the characteristics of individual computers (first of all the processor

performance and the memory rate), but also the performance parameters of the network transmitting the data among
them, has to be in the centre of attention in the process of efficient parallel program development for cluster
systems. These parameters are often used for formulating the theoretical estimations of the algorithm execution
time. It makes possible to predict the program execution time depending on the transmitted data size. Obtaining the
network performance parameters is a separate problem, which is solved by means of launching special test programs
on the particular available equipment. It is necessary to carry out these tests on each particular cluster because the
data provided by the hardware vendor may vary to a great extent depending on the available software and cluster
settings.

General Network Performance Parameters
The basic parameters, which are widely applied to characterize the network performance, are the latency and

the bandwidth. The latency (the delay) is the time, spent by the hardware and the software for processing the
request of sending a network message, i.e. this is the interval of time from the moment when the command to
transmit data is entered to the beginning of the data transmission. Usually the latency is given in microseconds.

The network bandwidth is the maximum amount of data that can be transmitted by the network channels at a
time unit. Usually it is measured in Mbyte/sec or Mbit/sec.

Methods for Evaluating the Network Performance Parameters
The basic idea of the algorithm for determining the network performance parameters, which is used in the tests

of given Lab, consists in sequential transmitting messages of various lengths between two nodes, using the functions
of the installed MPI implementation, and measuring the time spent on the transmission. If this data is available, the
bandwidth may be determined by dividing the length of the transmitted message by the time spent on the
transmission. In order to minimize the error, the transmission is repeated several times and the result is averaged. In
this case the estimation of the bandwidth usually increases with the increase of the message length going to some
maximum value. Usually theis maximum value (or the value obtained when a large message is transmitted) is used
as the estimation of the bandwidth.

The time spent on transmitting messages of zero length is usually considered to be the latency.
This Lab describes two test programs: Intel MPI Benchmark (IMB) and tests developed in the Research

Computational Center of the Moscow State University (RCC MSU).

Compiling the Benchmark Program
You can download the latest version of the IMB test package included into Intel Cluster Tools from Intel site

http://www.intel.com/cd/software/products/asmo-na/eng/cluster/mpi/219848.htm. In order to compile IMB for
Microsoft Windows, you will have to create a project in Microsoft Visual Studio 2005 on your own, by the analogy
to the projects, which we described in this Lab. You can also use the project framework included into this Lab (the
folder IMB_2_3).

Go to http://parallel.ru/ftp/tests/mpi-bench-suite.zip to download the tests developed by the RCC MSU. In
order to compile the tests for Microsoft Windows, you will have to create a project in Microsoft Visual Studio 2005
on your own. You can also use the project framework included into this Lab (the folder MGU_tests).

Running the Benchmarks
The benchmarks should be run on 2 network nodes (one process on each node). Thus, to launch the

benchmarks in CCS 2003 it is necessary to specify the total number of processors on 2 network nodes as the job
requirements and to choose these nodes manually:

• Open Job Manager. Execute the menu option File->Submit Job… Give the task name and go to the
window tab Processors,

http://www.intel.com/cd/software/products/asmo-na/eng/cluster/mpi/219848.htm
http://parallel.ru/ftp/tests/mpi-bench-suite.zip

• Give the total number of processors on the 2 computer nodes, where you are going to execute the

benchmarks (for instance, 8 in case you use 2 nodes consisting of 4 processors) as the job requirements. Go
to the window tab Tasks,

• Add the two tasks to the job: “mpiexec -hosts 2 s-cw2-01 1 s-cw2-02 1 \\s-cw-head\temp\imb.exe”,

“mpiexec -hosts 2 s-cw2-01 1 s-cw2-02 1 \\s-cw-head\temp\MGU_tests.exe” (remember to change the
command parameters for those corresponding to your case). The parameter “hosts” has the following
format: “n node1 m1 node2 m2 … noden mn”. You cannot use the environment variable CCP_NODES
in this case, as only 1 process must be run on each node. Specify the files for redirecting the standard
output stream for the tasks. Go to the window tab Advanced,

• Choose the option Use only these nodes and tick the nodes, which were given in the command at the

previous step. Press the button Submit to add the jobs to the queue and enter the name and the password of
the user authorized to run jobs on the cluster,

• The files, where the output stream was redirected to, contain the results of the benchmark execution. It is

important to note that IMB carries out a number of various tests, but we are interested only in the first of
them, PingPong, in order to obtain the network performance parameters. PingPong transmits data between
two network nodes using the blocking functions MPI_Send and MPI_Recv, which is optimum for the
estimation of the network parameters.

Discussions
• Define the terms “job” and “task”. What is the difference between them?
• What basic Microsoft Visual Studio 2005 settings should be specified for compiling a parallel program to

be used in the environment MS MPI?
• What are the peculiarities of launching parallel tasks (compiled for MS MPI) on the cluster?
• What is the parametric sweep? What is the workflow?
• What parameters characterizing the network performance do you know? Define them.

	Compute Cluster Server Lab 2: Carrying out Jobs under Micros
	Lab Objective

	General Scheme of Carrying out the Jobs under Microsoft Comp
	Exercise 1 – Compiling a Program for Running under CCS 2003
	Task 1 – Installation of Microsoft Compute Cluster Pack SDK
	Task 2 – Setting the Development Integration Environment of
	Task 3 – Compiling a Parallel Program in Microsoft Visual St

	Exercise 2 – Running a Serial Task
	Launching the Program via Graphic User Interface
	Launching the Program by Means of Template
	Launching the Program from the Command Line

	Exercise 3 – Launching a Parallel Job
	Exercise 4 – Launching a Parametric Sweep
	Exercise 5 – Launching a Work Flow
	Optional Exercise. Evaluating the Network Performance Parame
	General Network Performance Parameters
	Methods for Evaluating the Network Performance Parameters
	Compiling the Benchmark Program
	Running the Benchmarks

	Discussions

